Higher rank Einstein solvmanifolds

M. Zarghani
Department of Mathematics, Tarbiat Modares University, Tehran, Iran
E-mail: zarghanim@yahoo.com

Abstract. In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.

Keywords: Nilpotent Lie algebra, Einstein, Solvmanifold, Critical point, Ricci soliton, Left invariant metric.

2000 Mathematics subject classification: Primary 53C44; Secondary 22E25.

1. Introduction

General form of standard Einstein solvmanifolds were determined by Jense Heber (see [2]). Later, Gorge Lauret deeply studied this kind of manifolds. Solvable Lie group endowed with the left invariant Riemanian metric is called solvmanifold. Let S be a simply connected Lie group with the corresponding Lie algebra s endowed with the inner product determined by $<., .>$ and solvable Lie bracket [.,.]. We call S a higher rank solvmanifold if

$$
s=n \oplus a ; \quad n=[s, s], a=n^{\perp}
$$

where n is a metric nilpotent Lie algebra of dimension k. The codimension n is called the rank of S. The solvable Lie group ($S,[.,],.<., .>$) is called standard if a is abelian and it is said to be Einstein if its Ricci tensor ric ${ }_{[,,,]}$ satisfies ric $<, .>=c<., .>$, for some $c \in \mathbb{R} . s$ is called a metric solvable extension of n if the restriction of the Lie bracket and inner product of s to n coincide respectively with the Lie bracket and inner product of n. Let $\Lambda^{2} n^{*} \otimes n$
be the vector space of all bilinear skew-symmetric maps from $n \times n$ to n. There is a natural action of $G L(k)$ on $\Lambda^{2} n^{*} \otimes n$ which is given by

$$
\phi \cdot \mu(X, Y)=\phi \mu\left(\phi^{-1} X, \phi^{-1} Y\right) ; X, Y \in n, \phi \in G L(k), \mu \in \Lambda^{2} n^{*} \otimes n .
$$

Let N denote a simply connected nilpotent Lie group with Lie algebra (n, μ) endowed with the left invariant Riemannian metric $<., .>_{n}$, where μ is a nilpotent Lie algebra on n. The Ricci operator $R_{\mu}: n \rightarrow n$ of N is defined by

$$
<R_{\mu \cdot}, .>_{n}=\text { ric }<., .>_{n}
$$

This operator is reduced to

$$
\begin{align*}
<R_{\mu} X, Y>=- & \left.\left.\frac{1}{2} \sum_{i, j}<\mu\left(X, X_{i}\right), X_{j}\right)><\mu\left(Y, X_{i}\right), X_{j}\right)> \tag{1.1}\\
& +\frac{1}{4} \sum_{i, j}<\mu\left(X_{i}, X_{j}\right), X><\mu\left(X_{i}, X_{j}\right), Y>
\end{align*}
$$

for all $X, Y \in n$, where $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is any orthonormal basis of n. The inner product $<., .>_{n}$ determines an inner product on $\Lambda^{2} n^{*} \otimes n$, denoted by $<., .>$ and given by

$$
<\mu, \lambda>=\sum_{i, j, k}<\mu\left(X_{i}, X_{j}\right), X_{k}><\lambda\left(X_{i}, X_{j}\right), X_{k}>
$$

Also it naturally determines a norm on $\Lambda^{2} n^{*} \otimes n$ defined by

$$
\forall \lambda \in \Lambda^{2} n^{*} \otimes n \quad\|\lambda\|=\sum_{i j k}<\lambda\left(X_{i}, X_{j}\right), X_{v}>^{2}
$$

Consider the Riemannain function

$$
F_{k}: \Lambda^{2} n^{*} \otimes n \longrightarrow \mathbb{R}, \quad F_{k}(\mu)=\operatorname{tr} R_{\mu}{ }^{2}
$$

and the sphere S_{r} given by

$$
S_{r}=\left\{\mu \in \Lambda^{2} n^{*} \otimes n ;\|\mu\|^{2}=2 r^{2}\right\}
$$

for some $r \in \mathbb{R}$. Let \aleph_{k} be the vector space of all nilpotent Lie brackets on n and $\operatorname{Der}(\mu)$ be the Lie algebra of all derivations on n. Then $\mu \in \aleph_{k}$ is called a Ricci soliton if $R_{\mu}=c I+D$, for some $D \in \operatorname{Der}(\mu)$ and $c \in \mathbb{R}$.

In [6], Jorge Lauret has proved that the standard Einstein solvmanifolds are exactly the critical points of modified scalar curvature function $\left.F_{k}\right|_{S_{1}}$.

Theorem 1.1. [6]. For $\mu \in \aleph_{k} \cap S_{1}$, the following statements are equivalent:
(i) μ is a critical point of $\left.F_{k}\right|_{S_{1}}$.
(ii) μ is a critical point of $\left.F_{k}\right|_{G L(k) \cdot \mu \cap S_{1}}$.
(iii) μ admits a rank-one extension which is Einstein.
(iv) μ is a Ricci soliton.

2. Einstein solvmanifolds of rank ≥ 1

In this section, the structure of standard Einstein solvmanifolds is introduced. The next lemma provides some useful properties of solvable Lie bracket and inner product of a solvable Lie group. Then, we extend the Ricci soliton in [4] for any arbitrary rank. We call it multiple Ricci soliton.

Lemma 2.1. [2]. Let $(s=n \oplus a,[.,],.<., .>)$ be a metric solvable extension of $(n, \mu,<.,>)$, where for every $0 \neq A \in a, a d_{A}$ is nonzero and symmetric, then
(i) $<R_{[\cdot, .]} A, B>=-\operatorname{tr}\left(a d_{A} a d_{B}\right)$, for all $A, B \in a$.
(ii) $<R_{[,, .]} A, X>=0$, for all $A \in a, X \in n$.
(iii) $R_{\left.[., .]\right|_{n}}=-\left.a d_{Z}\right|_{n}+R_{\mu}$, where $<Z, X>=\operatorname{tr}\left(a d_{X}\right)$, for all $X \in n$.

Definition 2.2. $0 \neq \mu \in \aleph_{k}$ is called a multiple Ricci soliton of degree r if
(a) $R_{\mu}=c_{\mu} I+D_{\mu} ; D_{\mu} \in \operatorname{Der}(\mu), c_{\mu} \in \mathbb{R}$.
(b) There are nonzero symmetric derivations $D_{i}, 1 \leq i \leq r$, such that

$$
D_{\mu}=D_{1}+D_{2}+\ldots+D_{r}, \quad \operatorname{tr} D_{i} D_{j}=-\delta_{i j} c_{\mu} \operatorname{tr} D_{i}
$$

Remark 2.3. If μ is a multiple Ricci soliton of degree r, then μ is a multiple Ricci soliton of degree less than r. Therefore, μ is the critical point of $\left.F_{k}\right|_{S_{r} \cap G L(k) . \mu}$.

Using Definition 2.1, we study the structure of standard Einstein solvmanifolds as follows.

Proposition 2.4. For $0 \neq \mu \in \aleph_{k} \cap S_{r}$, the following statements are equivalent:
(i) μ admits a metric extension which is Einstein.
(ii) μ is a multiple Ricci soliton.

Proof. Let the Lie algebra (n, μ) admit an Einstein metric extension S with corresponding Lie algebra $(s=n \oplus a,[.,],.<., .>)$ such that $\operatorname{dim}(a)=$ r. Let $\left\{H_{1}, H_{2}, \ldots, H_{r}\right\}$ be an orthonormal basis for a and Z be the mean curvature vector field for the simply connected Lie group N with Lie algebra n. A straightforward calculation shows that $D_{\mu}=D_{1}+D_{2}+\ldots+D_{r}$, where $D_{\mu}:=$ $\left.a d_{Z}\right|_{n}$ and $D_{i}=\left.\operatorname{tr}\left(a d_{H_{i}}\right) a d_{H_{i}}\right|_{n}$. [.,.] is the Lie bracket. Hence, $D_{i} \mu(.,)=$. $\mu\left(., D_{i}.\right)+\mu\left(D_{i} .,.\right)$; that is to say, D_{i} 's are derivations on n. Suppose that D_{i} 's and D_{μ} are symmetric (see $[2 ; 4.10]$). Let $Z_{i}=\operatorname{tr}\left(a d_{H_{i}}\right) H_{i}$, then Lemma 2.1 implies that
$\operatorname{tr} D_{i} D_{j}=\operatorname{tr}\left(a d_{Z_{i}} a d_{Z_{j}}\right)=-<R_{[\cdot,]} Z_{i}, Z_{j}>=-c_{\mu}<Z_{i}, Z_{j}>=-\delta_{i j} c_{\mu} \operatorname{tr} D_{i}$.
Also $R_{\mu}=c_{\mu} I+D_{\mu}$, for some $c_{\mu} \in \mathbb{R}$. Therefore, μ is a multiple Ricci soliton. Conversely, let μ be a multiple Ricci soliton i.e.
(a) $R_{\mu}=c_{\mu} I+D_{\mu} ; \quad D_{\mu} \in \operatorname{Der}(n, \mu), c_{\mu} \in \mathbb{R}$.
(b) There are symmetric derivations $D_{i}, 1 \leq i \leq r$, such that

$$
D_{\mu}=D_{1}+D_{2}+\ldots+D_{r}, \quad \operatorname{tr} D_{i} D_{j}=-\delta_{i j} c_{\mu} \operatorname{tr} D_{i} .
$$

Let $\left(n, \mu,<, .,>_{n}\right)$ be a Lie algebra with orthonormal basis $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$.
We define Lie algebra s with a simply connected Lie group S as follows

$$
s=n \oplus \sum_{i} \mathbb{R} Z_{i},
$$

endowed with the inner product $\langle.,$.$\rangle defined by$

$$
<Z_{i}, Z_{j}>=\delta_{i j} \operatorname{tr} D_{i}, \quad<Z_{i}, n>=0,<., .>\left.\right|_{n \times n}=<., .>_{n} .
$$

Also, Lie bracket [.,.] is defined by

$$
\left[Z_{i}, Z_{j}\right]=0, \quad\left[Z_{i}, X_{j}\right]=-\left[X_{j}, Z_{i}\right]=D_{i} X_{j},\left.\quad[., .]\right|_{n \times n}=\mu .
$$

Clearly [.,.] is a Lie bracket, since D_{i} 's are derivations. $\left\{D_{\mu} X_{1}, D_{\mu} X_{2}, \ldots, D_{\mu} X_{k}\right\}$ is a linearly independent set which generates a subalgebra of $[s, s]$. Therefore, $n=[s, s] . \mu$ is nilpotent hence [.,.] is a solvable Lie bracket. Finally using Lemma 2.1, we have

$$
\begin{aligned}
& \left.<R_{[,,]} Z_{i}, Z_{j}\right\rangle=-\operatorname{tr}\left(D_{i} D_{j}\right)=\delta_{i j} c_{\mu} \operatorname{tr} D_{i}=c_{\mu}\left\langle Z_{i}, Z_{j}\right\rangle,\left\langle R_{[, .,]} Z_{i}, n\right\rangle=0, \\
& \left.\left.<R_{[\cdot, \cdot]} X_{i}, X_{j}\right\rangle=<\left(-D_{\mu}+R_{\mu}\right) X_{i}, X_{j}\right\rangle=\left\langle c_{\mu} X_{i}, X_{j}\right\rangle=c_{\mu}\left\langle X_{i}, X_{j}\right\rangle,
\end{aligned}
$$

which implies that $\langle., .\rangle_{s}$ is a Einstein metric. This completes the proof.
Using Proposition 2.1, we get a higher rank Einstein solvmanifold as the direct sum of the Lie algebras.

Proposition 2.5. If nonzero nilpotent Lie brackets μ_{1} and μ_{2} are Ricci solitons, then $\mu=\mu_{1} \oplus \mu_{2}$ is a multiple Ricci soliton of degree 2 .

Proof. μ_{1} and μ_{2} are Ricci solitons i.e.

$$
\begin{equation*}
R_{\mu_{i}}=c_{\mu_{i}} I+D_{\mu_{i}} ; \quad D_{\mu_{i}} \in \operatorname{Der}\left(\mu_{i}\right), c_{\mu_{i}} \in \mathbb{R}, i=1,2 . \tag{2.1}
\end{equation*}
$$

Up to isometry and scaling we can determine norms of μ_{1} and μ_{2} such that $c_{\mu_{1}}=c_{\mu_{2}}$. Set

$$
\begin{aligned}
D_{\mu} & =\left[\begin{array}{rr}
D_{\mu_{1}} & 0 \\
0 & D_{\mu_{2}}
\end{array}\right], \\
R_{\mu} & =\left[\begin{array}{cc}
R_{\mu_{1}} & 0 \\
0 & R_{\mu_{2}}
\end{array}\right],
\end{aligned}
$$

Then $R_{\mu}=c_{\mu_{1}} I+D_{\mu}, R_{\mu}=R_{\mu_{1}} \oplus R_{\mu_{2}}$ and $D_{\mu}=D_{\mu_{1}} \oplus D_{\mu_{2}}$. Also, by Theorem 1.3, $\operatorname{tr} D_{\mu_{i}} D_{\mu_{j}}=-\delta_{i j} c_{\mu_{1}} \operatorname{tr} D_{\mu_{i}} ; i=1,2$. Therefore μ is a multiple Ricci soliton which admits a 2 -rank Einstein solvable extension.

Corollary 2.6. If nonzero nilpotent Lie brackets $\mu_{i} \cdot s, 1 \leq i \leq r$, are Ricci solitons, then $\mu=\mu_{1} \oplus \mu_{2} \oplus \ldots \oplus \mu_{r}$ is a multiple Ricci soliton of degree r which admits an Einstein solvable extension of rank r.

Remark 2.7. There exist 31 Ricci soliton nonzero Lie algebras of dimension 6 (see [7]), which by direct sum of them, we can obtain a lot of multiple Ricci soliton nilpotent Lie algebras.

3. Standard methods

The goal of this section is to present certain results from [4] and [6]. In view of [4], Jorge Lauret has used a variational method for finding standard Einstein solvmanifolds. We will demonstrate this method in Theorem 3.1. We first give some preliminaries.

Lemma 3.1. (Lagrange multiplier theorem) [1]. Let P and M be smooth manifolds and $g: M \longrightarrow P$ be a smooth submersion. Let $f: M \longrightarrow \mathbb{R}$ be C^{r}, $m \in M$ and $p \in P$ such that $m \in g^{-1}(p)$, then the following statements are equivalent:
(i) m is a critical point of $\left.f\right|_{g^{-1}(p)}$.
(ii) There are $\lambda \in T_{p}{ }^{*} M$ such that $T_{m} f=\lambda \circ T_{m} g$.

The vector space \aleph_{k} is $G L(k)$-invariant, so we can refine Theorem 1.1 more accurately as follows.

Lemma 3.2. For $0 \neq \mu \in \aleph_{k}$ and $\psi \in G L(k)$ the following statements are equivalent:
(i) $\psi . \mu$ is a Ricci soliton.
(ii) $\psi \cdot \mu$ is a critical point of $\left.F_{k}\right|_{S_{r} \cap G L(k) . \mu}$.
(iii) ψ is a solution of the following system of equations:

$$
\left\{\begin{array}{c}
\|\phi \cdot \mu\|^{2}=2 r^{2} \\
\frac{\partial F_{k}(\phi \cdot \mu)}{\partial \phi_{i j}}=t \frac{\partial(\|\phi \cdot \mu\|)}{\partial \phi_{i j}}
\end{array}\right.
$$

where $t \in \mathbb{R}$ and $\phi \in G L(k)$.
Proof. Let $g(\lambda)=\frac{1}{2}\|\lambda\|^{2}$ be a function on $\Lambda^{2} n^{*} \otimes n$ and use Theorem 1.1 and Lemma 3.1 .

It is possible that the above system of equations is not solvable, hence we assume that for some $k \in \mathbb{N}$ and every $\phi \in G L(k)$ there exists $\mu \in \aleph_{k}$ such that $\phi . \mu$ isn't a Ricci soliton.

Notation 3.3. Suppose that $D G L(k):=\{\phi \in G L(k) ; \phi$ is diagonal $\}$, For any $\mu \in \aleph_{k} \subseteq \Lambda^{2} n^{*} \otimes n$, set

$$
\mu\left(X_{i}, X_{j}\right)=\sum_{v} c_{i j v} X_{v}, \quad \phi=\operatorname{diag}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{k}\right)
$$

then

$$
(\phi \cdot \mu)\left(X_{i}, X_{j}\right)=\sum_{x_{i j v} \neq 0} x_{i j v} X_{v} ; \quad x_{i j v}=\frac{\phi_{v} c_{i j v}}{\phi_{i} \phi_{j}}
$$

and for any i, j and v such that $<\mu\left(X_{i}, X_{j}\right), X_{v}>\neq 0$, the diagonal elements of $R_{\phi . \mu}$ are equal to

$$
\begin{aligned}
& \left(R_{\phi \cdot \mu}\right)_{i i}=-\frac{1}{2}\left(-x_{i j v}^{2}+\sum_{\substack{s t \\
x_{r s t} \neq x_{i j v}}} \delta^{r s t, i} x_{r s t}^{2}\right) \\
& \left(R_{\phi \cdot \mu}\right)_{j j}=-\frac{1}{2}\left(-x_{i j v}^{2}+\sum_{\substack{r s t \\
x_{r s t} \neq x_{i j v}}} \delta^{r s t, j} x_{r s t}^{2}\right) \\
& \left(R_{\phi \cdot \mu}\right)_{v v}=\frac{1}{2}\left(x_{i j v}^{2}+\sum_{\substack{r s t \\
x_{r s t} \neq x_{i j v}}} \delta^{r s t, v} x_{r s t}^{2}\right)
\end{aligned}
$$

where $\delta^{r s t, i}, \delta^{r s t, j}$ and $\delta^{r s t, v}$ are equal to 0,1 or -1 .
Lemma 3.4. [6]. Let $(n, \mu,<., .>)$ be a Lie algebra and $P_{\mu}=\operatorname{Sym}(n) \cap$ $\operatorname{Der}(n)$, then $R_{\mu} \perp P_{\mu}$ with inner product $\operatorname{tr}(A B)$ on $\operatorname{Sym}(n) \times \operatorname{Sym}(n)$.

Theorem 3.5. (Lauret theory) For every $\phi \in G L(k)$ and $\mu \in \aleph_{k}$ if $\phi . \mu \in S_{r}$ and R_{μ} is diagonal, then for any i, j and v such that $<\mu\left(X_{i}, X_{j}\right), X_{v}>\neq 0$, the following statements are equivalent:
(i) $R_{\psi \cdot \mu}=c_{\psi \cdot \mu} I+D_{\psi \cdot \mu} ; \quad D_{\psi \cdot \mu} \in \operatorname{Der}(\psi \cdot \mu)$
(ii) $c_{\psi . \mu}$ and $a_{i j v}^{2}$'s are solutions of the system

$$
\left\{\begin{array}{l}
\sum_{i, j, v} x_{i j v}^{2}=r^{2} \\
\left.\frac{\partial F_{k}(\phi \cdot \mu)}{\partial u_{i j v}}\right|_{x_{i j v}:=a_{i j v}}=-c_{\psi \cdot \mu}
\end{array}\right.
$$

where $(\phi \cdot \mu)\left(X_{i}, X_{j}\right)=\sum_{x_{i j v} \neq 0} x_{i j v} X_{v}, \quad u_{i j v}=x_{i j v}^{2}, \quad \psi \cdot \mu=\left.\phi \cdot \mu\right|_{x_{i j v}:=a_{i j v}}$.

Proof. By Lemma 3.2 and the chain rule, it is easy to see that $\psi \cdot \mu$ is a Ricci soliton if and only if variation t and $a_{i j v}^{2}$'s are solutions of the system

$$
\left\{\begin{array}{l}
\sum_{i, j, v} x_{i j v}^{2}=r^{2} \\
\left.\frac{\partial F_{k}(\phi \cdot \mu)}{\partial u_{i j v}}\right|_{x_{i j v}:=a_{i j v}}=t
\end{array}\right.
$$

Now we shall obtain the Lagrangian coefficient. By Lemma 3.3 it is easy to see that $\operatorname{tr} R_{\mu}{ }^{2}=c_{\mu} \operatorname{tr} R_{\mu}$. Also $\operatorname{tr} R_{\mu}=-\frac{1}{2}\|\mu\|^{2}$. Thus $F_{k}=-c_{\mu} r^{2}$. Consequently $\left.\frac{\partial F_{k}(\phi \cdot \mu)}{\partial u_{i j v}}\right|_{x_{i j v}:=a_{i j v}}=-c_{\mu}$.

Finally, we exhibit a rank-two Einstein solvmanifold of dimension 8 and a rank-three Einstein solvmanifold of dimension 15.

Example 3.6. Let $\mu=\mu_{1} \oplus \mu_{2}$, where $\mu_{1}\left(X_{1}, X_{2}\right)=X_{5}, \quad \mu_{2}\left(X_{3}, X_{4}\right)=X_{6}$ and $\phi=\operatorname{diag}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{6}\right)$, then

$$
\phi \cdot \mu_{1}\left(X_{1}, X_{2}\right)=\frac{\phi_{5}}{\phi_{1} \phi_{2}} X_{5} \text { and } \phi \cdot \mu_{2}\left(X_{3}, X_{4}\right)=\frac{\phi_{6}}{\phi_{3} \phi_{4}} X_{6}
$$

Let $x:=\frac{\phi_{5}}{\phi_{1} \phi_{2}}, \quad y:=\frac{\phi_{6}}{\phi_{3} \phi_{4}}$. Using Theorem 3.1, it is easy to see $x^{2}=y^{2}=$ 1. Therefore $D_{\mu_{1}}=\operatorname{diag}(1,1,0,0,2,0)$ and $D_{\mu_{2}}=\operatorname{diag}(0,0,1,1,0,2)$. If $\left(n_{1}, \mu_{1},<.,>_{1}\right)$ and $\left(n_{2}, \mu_{2},<., .>_{2}\right)$ are nilradical Lie algebras, define the Lie algebra s with simply connected Lie group S using the following direct sum

$$
s=\mathbb{R} Z_{1} \oplus n_{1} \oplus \mathbb{R} Z_{2} \oplus n_{2}
$$

endowed with the inner product $<., .>$ defined by

$$
<Z_{i}, Z_{j}>=4 \delta_{i j},<Z_{i}, n>=0,<., .>\left.\right|_{n_{i} \times n_{i}}=<., .>_{i} ; \quad 1 \leq i, j \leq 2
$$

where the Lie bracket [.,.] on s is defined by

$$
\begin{aligned}
& {\left[Z_{1}, X_{1}\right]=-\left[X_{1}, Z_{1}\right]=X_{1},} \\
& {\left[Z_{1}, X_{5}\right]=-\left[X_{5}, Z_{1}\right]=2 X_{5},} \\
& \left.\left[Z_{2}, X_{4}\right]=-\left[Z_{2}, X_{3}\right]=-\left[X_{2}, Z_{1}\right]=X_{2}\right]=X_{3} \\
& \left.\quad\left[Z_{i}, Z_{j}\right]=X_{4}\right], \quad\left[Z_{2}, X_{6}\right]=-\left[X_{6}, Z_{2}\right]=2 X_{6}, \\
& \left.\right|_{n_{i} \times n_{i}}=\mu_{i} ; 1 \leq i, j \leq 2
\end{aligned}
$$

and it is equal to zero otherwise. It is easy to see that $R_{[., .]_{s}}=-\frac{3}{2} I_{8 \times 8}$ which implies that S_{μ} is Einstein of rank 2.

Example 3.7. Let $\mu=\mu_{1} \oplus \mu_{2} \oplus \mu_{3}$, where μ_{1} and μ_{2} are Lie algebras given in Example 1 and $\mu_{3} \in \aleph_{6}$ is given by

$$
\mu_{3}\left(X_{7}, X_{i}\right)=X_{i+1} ; 8 \leq i \leq 11
$$

Every $\phi . \mu_{3} \in D G L(6) . \mu_{3} \cap S_{\sqrt{\frac{30}{13}}}$ is equal to

$$
\phi \cdot \mu_{3}\left(X_{7}, X_{i}\right)=a_{7, i, i+1} X_{i+1} ; i=8,9,10,11 .
$$

By Lauret theory it is easy to see that a critical point of F_{6} restricted to the leaf $\sum_{7<i<12} a_{7, i, i+1}^{2}=\frac{20}{13}$ is equal to $\mu_{3}\left\{a_{7, i, i+1}\right\}$ where

$$
a_{7,8,9}^{2}=\frac{12}{13}, \quad a_{7,9,10}^{2}=\frac{9}{13}, \quad a_{7,10,11}^{2}=\frac{3}{13}, \quad a_{7,11,12}^{2}=\frac{9}{13}, \quad c_{\psi \cdot \mu_{3}}=-\frac{3}{2}
$$

and

$$
D_{\mu_{3}\left(a_{7, i, i+1}\right)}=\operatorname{diag}\left(0,0,0,0,0,0, \frac{15}{26}, \frac{42}{26}, \frac{36}{26}, \frac{51}{26}, \frac{48}{26}, \frac{51}{26}\right)
$$

Let $\left(n_{3}, \mu_{3}\left(a_{7, i, i+1}\right),<., .>_{3}\right)$ be a Ricci soliton. Define Lie algebra s with simply connected Lie group S using the following direct sum

$$
s=\mathbb{R} Z_{1} \oplus n_{1} \oplus \mathbb{R} Z_{2} \oplus n_{2} \oplus \mathbb{R} Z_{3} \oplus n_{3}
$$

endowed with the inner product $<., .>$ which is defined by

$$
<Z_{1}, Z_{1}>=4,<Z_{2}, Z_{2}>=4,<Z_{3}, Z_{3}>=\frac{243}{13},<., .>\left.\right|_{n_{i} \times n_{i}}=<., .>_{i}
$$

and it is equal to zero otherwise. Lie bracket [.,.] on S defined by

$$
\begin{array}{ll}
{\left[Z_{1}, X_{1}\right]=-\left[X_{1}, Z_{1}\right]=X_{1},} & {\left[Z_{1}, X_{2}\right]=-\left[X_{2}, Z_{1}\right]=X_{2}} \\
{\left[Z_{1}, X_{5}\right]=-\left[X_{5}, Z_{1}\right]=2 X_{5},} & {\left[Z_{2}, X_{3}\right]=-\left[X_{3}, Z_{2}\right]=X_{3}} \\
{\left[Z_{2}, X_{4}\right]=-\left[X_{4}, Z_{2}\right]=X_{4},} & {\left[Z_{2}, X_{6}\right]=-\left[X_{6}, Z_{2}\right]=2 X_{6}}
\end{array}
$$

$$
\begin{aligned}
{\left[Z_{3}, X_{7}\right]=-\left[X_{7}, Z_{3}\right]=\frac{15}{26} X_{7}, } & {\left[Z_{3}, X_{8}\right]=-\left[X_{8}, Z_{3}\right]=\frac{42}{26} X_{8} } \\
{\left[Z_{3}, X_{9}\right]=-\left[X_{9}, Z_{3}\right]=\frac{36}{26} X_{9}, } & {\left[Z_{3}, X_{10}\right]=-\left[X_{10}, Z_{3}\right]=\frac{51}{26} X_{10}, } \\
{\left[Z_{3}, X_{11}\right]=-\left[X_{11}, Z_{3}\right]=\frac{48}{26} X_{11}, } & {\left[Z_{3}, X_{12}\right]=-\left[X_{12}, Z_{3}\right]=\frac{51}{26} X_{12}, } \\
{\left.[., .]\right|_{n_{i} \times n_{i}}=\mu_{n_{i}} ; } & i=1,2
\end{aligned}
$$

and otherwise is equal to zero. It is easy to check that $R_{[., .]}=-\frac{3}{2} I_{15 \times 15}$ which implies that S_{μ} is Einstein of rank 3.

Acknowledgment. The results of this paper were obtained during my M.Sc. studies at Tarbiat Modares University. I would like to express my deep gratitude to my supervisor, prof. S.M.B. Kashani, for his guidance and support. Also I wish to thank anonymous referees for their valuable comments and suggestions.

References

1. A. Besse, Einstein manifolds, Ergeb. Math. 10, 1987.
2. J. Heber, Non-compact homogeneous Einstein spaces, Invent. Math., 133, (1998), 279352.
3. S. Helgason, Differential Geometry Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
4. S. Hong and M. M. Tripathi, Ricci curvature of submanifolds of a Sasakian space form, Iranian Journal of Mathematical Sciences and Informatics, 1, (2006), 31-51.
5. J. Lauret, Finding Einstein solvmanifolds by a variational method, Math. Z., 241, (2003), 83-99.
6. J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319, (2001), 715-733.
7. A. M. Tripathi, N. Mathur and S. Srivastava, A study of Nilpotent groups trough right transversals, Iranian Journal of Mathematical Sciences and Informatics, 4, (2009), 4954.
8. J. Lauret, Standard Einstein solvmanifolds as critical points, Quart. J. Math., 52, (2001), 463-470.
9. C. Will, Rank-one Einstein solvmanifolds of dimention 7, Differential Geom. Appl., 19, (2003), 307-318.
